## Problem 2 - Kangaroo

Day 1 - Task 2
Adrian Panaete, Colegiul National A.T. Laurian Ionel-Vasile Pit-Rada, Colegiul National Traian

## Solution - 100 points

A sequence of jumps from cs to cf can be mirrored and thus obtaining a valid sequence of jumps from cf to cs. Due to this symmetry, cs and cf can be swapped such that cs < cf.

We will add the following definitions:
A[n][i][j] = the number of alternating permutations that start ascending, having the first and the last elements $i$ and $j$
$\mathrm{D}[\mathrm{n}][\mathrm{i}][\mathrm{j}]=$ the number of alternating permutations that start
descending, having the first and the last elements $i$ and $j$
X[n][i][j] = A[n][i][j] + D[n][i][j], (our target)
$Y[n][i][j]=A[n][i][j]-D[n][i][j], ~(f o r ~ f o r m a l ~ r e a s o n s) ~$
Let's consider an alternating permutation of length $n$ that starts with $i$ and ends with j. By removing the left extremity (i) and decreasing all values greater than i by 1, we'll obtain an alternating permutation of order $\mathrm{n}-1$. We can infer the following recurrences:

$$
\begin{aligned}
& A[n][i][j]=D[n-1][i][j-1]+D[n-1][i+1][j-1]+\ldots+D[n-1][n-2][j-1] \\
& D[n][i][j]=A[n-1][1][j-1]+A[n-1][2][j-1]+\ldots+A[n-1][i-1][j-1],
\end{aligned}
$$

In other words, the number of alternating permutations of length $n$ starting ascending with i and ending with $j$ is equal with the number of alternating permutations of length n-1 starting descending with i, i + 1, ..., n-1 and ending with j-1. Similarly for D[][][].

The above recurrences can be rewritten more conveniently:

$$
\begin{aligned}
& A[n][i][j]=A[n][i-1][j]-D[n-1][i-1][j-1], \\
& D[n][i][j]=D[n][i-1][j]+A[n-1][i-1][j-1],
\end{aligned}
$$

and from here we obtain

$$
\begin{aligned}
& X[n][i][j]=X[n][i-1][j]+Y[n-1][i-1][j-1], \\
& Y[n][i][j]=Y[n][i-1][j]-X[n-1][i-1][j-1]
\end{aligned}
$$

After a few manipulations we can further derive:

```
X[n][i][j] = 2.X[n][i-1][j] - X[n][i-2][j] - X[n-2][i-2][j-2],
n>=3, i>=3
```

Let's stop for a moment to assess the complexity. The answer can be easily computed in $\mathbf{O}\left(\mathbf{N}^{\wedge} 3\right)$ using the above recurrence, but it can be reduced to $\mathbf{O ( N \wedge 2 )}$ as follows.

Note the following invariant that is preserved by the recurrence:
$n-j=(n-2)-(j-2)=$ constant
This is a key observation that shows the first and the third index of X[][] [] will not be independent of each other by repeatedly using the recurrence starting backwards from X[N][cs][cf]. Therefore, instead of three independent variables, ( $n, i, j$ ), we'll have only two (since $N$ - cf = $n-j$ $=$ constant) so the complexity will be $\mathbf{O}\left(\mathbf{N}^{\wedge} \mathbf{2 )}\right.$ for a proper implementation.

We have one more thing to do, namely handling the corner cases i<=2:
Case $n \bmod 2=1$

$$
\begin{aligned}
& X[n][1][j]=A[n][1][j]=A[n][j][1] \\
& A[n][j][1]=D[n-1][j][1]+D[n-1][j+1][1]+\ldots+D[n-1][n-1][1] \\
& A[n][j][1]=A[n-1][1][j]+A[n-1][1][j+1]+\ldots+A[n-1][1][n-1] \\
& A[n][1][j]=A[n][1][j-1]-A[n-1][1][j-1]
\end{aligned}
$$

Case $n \bmod 2=0$
$X[n][1][j]=A[n][1][j]=D[n][j][1]$
$D[n][j][1]=A[n-1][j-1][1]+A[n-1][j-2][1]+\ldots+A[n-1][3][1]$
$D[n][j][1]=A[n-1][1][j-1]+A[n-1][1][j-2]+\ldots+A[n-1][1][3]$
$A[n][1][j]=A[n][1][j-1]+A[n-1][1][j-1]$
resulting in
$X[n][1][j]=X[n][1][j-1]-X[n-1][1][j-1], \quad n \bmod 2=1$
$X[n][1][j]=X[n][1][j-1]+X[n-1][1][j-1], \quad n \bmod 2=0$
We have also:
$A[n][2][j]=A[n][1][j]-D[n-1][1][j-1]=A[n][1][j]=X[n][1][j]$
$D[n][2][j]=D[n][1][j]+A[n-1][1][j-1]=A[n-1][1][j-1]=X[n-1][1][j-1]$
(there is no descending permutation starting with 1)
$X[n][2][j]=X[n][1][j]+X[n-1][1][j-1]$

