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Let's recall the traditional algorithm for checking whether a bracket string is a valid bracket sequence. 

The algorithm iterates over all characters sequentially and makes use of a stack. If the next character to 

process is an opening bracket, we push it to the top of the stack. If it is a closing bracket, we check the 

state of the stack. If it is empty, the sequence is not valid. Otherwise, we erase its top item. If at the end of 

the process the stack is non-empty, again, the sequence is not valid. Note that this also gives us a way to 

identify "matching" brackets (in the sense defined in the problem statement). Every opening bracket is 

matched with the closing bracket that "popped" it off the top of the stack. 

 

Solution 1 – 11 points 

 

It's reasonable to assume that this stack-based approach is valuable to our current problem. We act much 

in the same manner, processing the characters of string S from left to right: if the stack is empty, the 

current character is pushed to the top of the stack, acting as an opening bracket. The same happens if the 

stack is not empty but its topmost character differs from our current one. However, if the stack's topmost 

character is the same as our current one, then we can also opt to convert the current one into a closing 

bracket and "pop" the other one off the stack. It's not clear how a particular decision affects future options 

or the existence of a solution, so the safest way to take care of this issue is to backtrack through all 

possible sequences of decisions and retain the best valid bracket sequence, or detect that none exists. 

Because each character leaves us with at most 2 options, the time complexity of this algorithm is bounded 

by O(2N). It should score 11 points.  

 

Solution 2 – 39 points 

 

Going further, let's find a faster algorithm, but for a simpler problem. How fast can we decide if any 

matching valid bracket sequence exists for the given string? Intuitively, it seems that the only type of 

"bad" decision one can make is to open a bracket instead of closing an existing one. This is because the 

only way the algorithm can fail is by not having an empty stack at the end. It turns out that, indeed, 

closing brackets as soon as possible is a valid way of finding a solution if one exists. 

 

To prove this, consider a scenario in which there exists a solution that was not found by this algorithm 

and show that it can be transformed into another solution that this algorithm will find. Therefore, we have 

a simple O(N) algorithm that can check if a valid bracket sequence exists. Let's name this algorithm 

DECIDE. We can then apply a classical technique for obtaining lexicographically minimal solutions for a 

certain problem. For each decision we are confronted with, let's try to greedily convert the character into 

an opening bracket. To check if this might be a bad decision, run DECIDE on the current stack and the 

remaining string. If DECIDE tells us that it can no longer find any valid solution, we should instead 

choose to convert the character into a closing bracket. This gives us a simple O(N2) algorithm for our 

original problem. It should score 39 points. 

 

Solution 3 – 100 points 

 

Now let's look for a faster algorithm. Note that the first character will always be an open bracket. Let's 

assume we already magically know where its matching closing bracket will be in the optimal solution. 

Let's denote this value by OptMatchBeginning. Then, we can set the 0-th character of the solution to 

be '(', the OptMatchBeginning-th character to be ')' and then solve 

S[1...OptMatchBeginning - 1] and S[OptMatchBeginning + 1...N - 1] 

recursively. 
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This would be handy indeed, so let's see what OptMatchBeginning is and how we can find it quickly. 

For a certain position, Pos, to be a valid candidate, it should hold that S[Pos] = S[0] and 

DECIDE(S[1..Pos - 1]) = True (why?). Acting again on intuition, we conjecture that among 

these valid positions, the right-most one is the optimal one. To prove this, suppose PosLeft and 

PosRight are two candidates, with PosLeft < PosRight. We know the following: 

 
DECIDE(S[1...PosLeft - 1]) = True   (1) 

DECIDE(S[1...PosRight - 1]) = True  (2) 

 

We also introduce  

 

Lemma 1: If DECIDE(S[x..z]) = True and DECIDE(S[x..y]) = True, with y < z, then it 

holds that DECIDE(S[y + 1..z]) = True. 

 

Proof hint: DECIDE behaves identically for S[x..z] and S[x..y] up to and including position y. 

Also, because S[x..y] is solvable, it means that immediately after position y, the stack is empty. It will 

also be empty after position z.  

 

Applying Lemma 1 on (1) and (2), we deduce that DECIDE(S[PosLeft..PosRight - 1]) = 

True. We can infer that matching S[0] with S[PosRight] gives us a strictly better solution than 

matching it with S[PosLeft]. This is because the solution for S[1..PosLeft - 1] can remain 

exactly the same in both instances, but in the former case S[PosLeft] can become an opening bracket 

instead of a closing one. 

 

We still have to make sure we can find OptMatchBeginning quickly in each recursive call. We'll 

pose the problem in such a way that it lends itself to an easy precomputation. We state the following:  

 

Lemma 2: OptMatchBeginning is equal to the maximum position X for which DECIDE(S[X + 

1..N - 1]) = True and S[X] = S[0].  

 

Proof hint: Using Lemma 1 (we actually apply it on reversed strings, but it's easy to see everything stays 

the same) we deduce that DECIDE(S[0..X]) = True. The last thing we should prove is that 

DECIDE(S[1..X - 1]) = True (so S[0] can really be matched with S[X]). Imagine any 

solution for DECIDE(S[0..X]). If S[0] and S[X] are not matched with each other, but with, say, 

S[Y] and S[Z] respectively, we can safely match S[Y] and S[Z] together and then match S[0] with 

S[X] keeping the rest of the solution exactly the same. 

 

Now that Lemma 2 is proven true, we'll precompute the following table: prevStart[i][c] = the 

maximum position j, with j ≤ i such that DECIDE(S[j + 1..i]) = True and S[j] = c. 

This precomputation needs O(N * SIGMA) memory and O(N * SIGMA) time (its recurrence is left 

as an exercise). Then, OptMatchBeginning is simply equal to prevStart[N - 1][S[0]]. It 

may not be apparent that doing this precomputation for the original string is enough to correctly 

determine OptMatchBeginning values for all recursive calls. Specifically, say we're solving 

S[left..right] recursively; is it always true that prevStart[right][S[left]] > left? 

This is indeed the case, but if you're unconvinced, try proving it formally. The reasoning is similar to our 

previous proof outlines.  

 

The described algorithm has O(N * SIGMA) time complexity and should score 100 points. Purely 

linear solutions also exist, we invite you to find them! 


