## Solution 1 - 21 points

We will use the following 3-leveled structure to create the router:

- Level 1: N inputs
- Level 2: K intermediary nodes
- Level 3: N outputs

We group the N inputs evenly into K groups of size $\mathrm{N} / \mathrm{K}$. Nodes from each group will be connected with each of the corresponding $K$ nodes from level 2 . Each node from level 2 will be connected with each node from level 3.

This grouping produces $\mathrm{N}+\mathrm{N} * \mathrm{~K}$ connections. The maximum power will be achieved in the intermediary nodes, and is equal to $N^{2} / \mathrm{K}$ ( N output nodes connected with $\mathrm{N} / \mathrm{K}$ inputs). We can then check for all possible values for K which one produces a solution which satisfies the power and connection constraints.

We find that a suitable value for K is approximately $\mathrm{N}^{(1 / 2)}$. This produces $\mathrm{N}+\mathrm{N}^{(3 / 2)}$ connections and $\mathrm{N}^{(3 / 2)}$ maximum power.

## Solution 2-47 points

We will use the following 4-leveled structure to create the router:

- Level 1: N inputs
- Level 2: K intermediary nodes
- Level 3: K intermediary nodes
- Level 4: N outputs

We group the N inputs evenly into K groups of size $\mathrm{N} / \mathrm{K}$. Nodes from each of the K groups will be connected with each of the corresponding K nodes from level 2 . Similarly, all outputs will be grouped and connected to the corresponding nodes from level 3 . Finally, each node from level 2 will be connected with each node from level 3.

This grouping produces $2 * N+K^{2}$ connections. The maximum power will be achieved in the intermediary nodes, and is equal to $\mathrm{N}^{2} / \mathrm{K}$ ( N input nodes connected with $\mathrm{N} / \mathrm{K}$ outputs, or N output nodes connected with N / K inputs). We can then check for all possible values for K which one produces a solution which satisfies the power and connection constraints.

We find that a suitable value for K is approximately $\mathrm{N}^{(2 / 3)}$. This produces $2 \star \mathrm{~N}+\mathrm{N}^{(4 / 3)}$ connections and $\mathrm{N}^{(4 / 3)}$ maximum power.

## Solution 3-77 points

We will use the divide and conquer approach. Let's assume we want to connect the input nodes $\left\{\mathrm{In}_{0}\right.$, $\left.\ldots, \mathrm{In}_{\mathrm{N}-1}\right\}$ to the output nodes $\left\{\right.$ Out $_{0}, \ldots$, Out $\left._{\mathrm{N}-1}\right\}$.

If $\mathrm{n}=1$, then we simply add an edge from $\mathrm{In}_{0}$ to $O u t_{0}$ and we are done. Otherwise, we will create a middle layer with nodes $\left\{N e x t I n_{0}, \ldots, N e x t I n_{N-1}\right\}$ and we will split this layer into two subsets,
 1\}.

Then, we connect every node from Next $\mathrm{N}_{0}$ to the output nodes $\left\{\mathrm{Out}_{0}, \ldots, \mathrm{Out}_{[\mathrm{N} / 2]-1}\right\}$ and every node from Next ${ }_{1}$ to the output nodes $\left\{\mathrm{Out}_{[\mathrm{N} / 2]}, \ldots, \mathrm{Out}_{\mathrm{N}-1}\right\}$ using the same recursive approach. Now, it is sufficient to connect every input node $\left\{\mathrm{In}_{0}, \ldots, \quad \mathrm{In}_{\mathrm{N}-1}\right\}$ to at least one node from Next ${ }_{0}$ and at least one node from $\mathrm{Next}_{1}$ in order to assure that every input node is connected to every output node.

To do this, we will connect $\operatorname{In}_{\mathrm{i}}$ to $\operatorname{NextIn_{i}}$ and $\left.\operatorname{NextIn} \mathrm{n}_{\mathrm{N} / 2+(\mathrm{i} \bmod (\mathbb{N}-[\mathrm{N} / 2])}\right)$ for $0 \leq i<N / 2$ and we will connect $\operatorname{In}_{\mathrm{i}}$ to $\operatorname{NextIn} \mathrm{n}_{\mathrm{i}}$ and NextIn $\mathrm{m}_{(\mathrm{i}-[\mathrm{N} / 2]) \bmod [\mathrm{N} / 2]}$ for $\mathrm{N} / 2 \leq \mathrm{i}<\mathrm{n}$.

Let $E(n)$ be the number of edges used to connect $n$ input nodes to $n$ output nodes. The recurrence for this number is $E(1)=1, E(N)=E([N / 2])+E(N-[N / 2])+2 N$. We can solve this even programmatically and we find $\mathrm{E}(\mathrm{N})=2 \mathrm{~N} * \log _{2} \mathrm{~N}+\mathrm{N}$.

Let us analyze the maximum cost of a node if we connect $n$ input nodes to $n$ output nodes. Every input node and every output node will have a cost of exactly N . Every node at the k -th intermediate layer will be connected to $\mathrm{N} / 2^{\mathrm{k}}$ output nodes and there will be less than $2^{\mathrm{k}+1}$ input nodes connected to it. Thus, the maximum cost is less than 2 N .

## Solution 4-100 points

We will optimize the previous solution, in order the balance the number of edges with the maximum cost of a node.

If we try to connect $N$ input nodes to $N$ output nodes, we will create [ $N / t$ ] input buckets and [ $N / t$ ] output buckets. We will create an intermediate node for every bucket and we will connect every node i to the [i/t]-th corresponding intermediate node ( $0 \leq i<n$ ). Thus, we have two middle input and output layers with [ $\mathrm{N} / \mathrm{t}$ ] nodes each, which we will connect using the divide and conquer approach.

This solution decreases the number of edges with a factor comparable to $t$ and increases the maximum cost of a node with a factor comparable to $t^{2}$. The optimal value of $t$ can be determined using various techniques, even through manual experimentation. A reasonable value for this threshold is $t=4$.

